skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zeng, Xianyi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Circular domains frequently appear in mathematical modeling in the fields of ecology, biology and chemistry. In this paper, we investigate the equivariant Hopf bifurcation of partial functional differential equations with Neumann boundary condition on a two-dimensional disk. The properties of these bifurcations at equilibriums are analyzed rigorously by studying the equivariant normal forms. Two reaction–diffusion systems with discrete time delays are selected as numerical examples to verify the theoretical results, in which spatially inhomogeneous periodic solutions including standing waves and rotating waves, and spatially homogeneous periodic solutions are found near the bifurcation points. 
    more » « less
  3. Abstract In this article we study the stability of explicit finite difference discretization of advection–diffusion equations (ADE) with arbitrary order of accuracy in the context of method of lines. The analysis first focuses on the stability of the system of ordinary differential equations that is obtained by discretizing the ADE in space and then extends to fully discretized methods in combination with explicit Runge–Kutta methods. In particular, we prove that all stable semi‐discretization of the ADE leads to a conditionally stable fully discretized method as long as the time‐integrator is at least first‐order accurate, whereas high‐order spatial discretization of the advection equation cannot yield a stable method if the temporal order is too low. In the second half of the article, the analysis and the stability results are extended to a partially dissipative wave system, which serves as a model for common practice in many fluid mechanics applications that incorporate a viscous stress in the momentum equation but no heat dissipation in the energy equation. Finally, the major theoretical predictions are verified by numerical examples. 
    more » « less